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Abstract. This paper presents simple and clear closed expressions of the generator matrix 
elements of U(2n) in Weyl-basis tableaux, symmetry adapted to U(2) x U(n).  

1. Introduction 

In recent papers [ 1,2] we have presented a Weyl graphical method for evaluating the 
matrix elements of U( n) generators as well as products of generators. It is our aim in 
this paper to derive a closed expression of the matrix elements of U(2n) generators 
in Weyl-basis tableaux adapted to U(2)xU(n) .  This expression will be applied to 
dealing with the spin-dependent Hamiltonians in many-electron systems. 

For spin-dependent Hamiltonians, Harter and Patterson [3] have advocated the 
evaluation of the matrix elements in the Slater basis and transferred the results to the 
spin-orbit basis via their ‘assembly formula’. By considering the transformation proper- 
ties of the generators of U(2n) under commutation with the generators of U( n )  x U(2), 
Gould and Chandler [4] have derived the adjoint coupling coefficients and used them 
for calculating the matrix elements of the generators of U(2n) in a Paldus-basis 
symmetry adapted to the subgroup U(n) x U(2) (i.e. the spin-orbit basis). Recently, 
a different approach was developed by Lev [ 5 ]  who presented an iterative method for 
calculating the matrix representatives of spin-dependent operators in the symmetric- 
group approach to many-electron systems, by considering the Lie algebra of the totally 
symmetric spin-dependent operators and their generators. 

In this paper we shall apply the results of [ l ,  21 as well as the Wigner-Eckart 
theorem to obtaining the closed formulae of U(2n) generator matrix elements in the 
spin-orbit basis for the three cases of A S  = 0, il. In our derivation we find it both 
convenient and natural to introduce an additional quantum number P into the case 
of AS = 0. Such a procedure thereby offers a new insight and is more reasonable than 
that of Gould and Chandler. The closed formulae derived in this paper are simpler 
and clearer as well as more practical than those presented in [4,5] and all the results 
are the same as those obtained by Lev’s method (up to a phase factor). 
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We should also note that the method developed in this paper may be extended 
into the evaluation of U(mn) matrix elements in a Weyl-basis tableau, symmetry 
adapted to the subgroup U(m) x U(n),  which we will undertake in the future. 

This paper is organised as follows. The general theory and derivation are outlined 
in 0 2. The specific formulae for different shifts of AS are then developed in 0 3 and 
several examples are also given out in this section. Finally, the technique for obtaining 
the whole column of the U(2n) generator matrix representation is presented in 0 4. 

2. General theory 

Let 1 W2,) be the canonical Weyl-basis tableau spanning the irreducible representation 
( IR)  [ l N ]  of U(2n), where N is the number of electrons in the system concerned. Let 
I W2,  W,,) be a non-canonical Weyl-basis tableau, symmetry adapted to the group chain 
U(2n) 2 U(2) x U(n) (i.e. spin-orbit basis), where I W2) or I W,) denotes the canonical 
Weyl-basis tableau spanning the I R  [ Y2] or U(2) of [ Y,,] or U(n).  [ Y2] and [ Y,]  must 
be manually the conjugate Young diagram, namely [ Y2] = [ ? , , I ,  by virtue of Pauli's 
exclusion principle. If we designate Ai ( i  = 1 ,  2) as the number of boxes in the ith 
column of [ Y,,], or that in the ith row of [ Y2] ,  both [ Y2] and [ Y,]  can be labelled by 
[ A ,  A,], and A I ,  A 2  satisfy relations such that 

where S is the spin quantum number of the system. 
By the transformation properties of the U(2n) generators and the well known 

Wigner-Eckart theorem, the matrix elements of the U(2n) generator (the Greek 
subscripts refer to spin orbital and the Latin subscripts refer to space orbitals) between 
the spin-orbit basis can be expressed in the form 

(2) 
where the first term on the right-hand side is the U(2) x U( n )  reduced matrix element, 
being independent of the weights of the I R  for U(2) and U(n).  The second and third 
terms are the coupling coefficients for U(2) and U(n),  respectively, where iOJ is the 
unit basis tensor, in terms of Weyl tableaux, for the carried tensor product space rBr* 
of U(n), and pBfi is that of U(2). (For typographic convenience, we have omitted 
the squares surrounding the letters or numbers in the Weyl tableaux.) The explicit 
expressions for the coupling coefficients for U(2), which are completely known, are 
shown in the appendix. In this paper, we address the solution for the coupling 
coefficients for U(n) and the reduced matrix elements in (2). 

According to the reduction of product of Young diagrams, the U(2n) matrix 
elements in (2) will be zero unless the I R  of initial, intermediate and final states satisfy 
the selection rules in table 1 labelled by A S  = S' - S and an additional quantum number 
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Table 1. The selection rules for the non-zero coupling coefficients of U(2) or U(n). 

[ A i  A i l  [ A ;  A;]  [ A ,  A 2 1  

P ( = l ,  2) in the case of AS = O .  Therefore (2) can be rewritten as the two following 
subformulae: 

([A;  Ail I I ~ A I  A 2 I )  

W2 Wn AS 
w; w:, a W 9 u J  

(3b) 
For the sake of eliminating the reduced matrix elements in (3a)  and (3b), we 

consider the U( 2n)  matrix elements between the only possible highest-weight spin-orbit 
basis states belonging to the I R  [ A ;  A;] and IR [ A ,  A2], respectively. Let us assume 
that these matrix elements can be evaluated and expressed by the form 

where the subscript m refers to the maximal state and ank,p[  is the appropriate U(2n) 
generator making the matrix element non-zero. The subscripts a, p, k, 1 can be 
determined by the labels A I ,  A2, A S  and P (see the next section). Obviously, it is also 
possible to factorise, in terms of the Wigner-Eckart theorem, the matrix elements of 
(4) into the product of coupling coefficients for U(2) and U( n )  and the reduced matrix 
element, which is equal to that appearing in (3). Then, combining (3) and eliminating 
the reduced matrix elements, we obtain the following formulae: 

( [ A i  *:I1 / [ A I  "'1) 
W2 Wn AS 

w; w:, afi i .uj  
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AS = 0. (55) 

We now restrict our attention to the remaining problem of the ratio between two 
U(n) coupling coefficients in (5) .  We denote by E, the U(n) generator related to 
the U(2n) generators by 

Using the property of E,,+, ( i  = 1, 2 , .  . . , n )  constituting a vector operator of U(n) 
and the Wigner-Eckart theorem again, we have 

where the selection of IR [ Yn+l] of U(n + 1 )  should satisfy the reducing conditions as 

Substituting (7)  into ( 5 ) ,  we thereby obtain the general formulae for U(2n) generator 
matrix elements in the spin-orbit basis as follows: 

w; w:, 
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3. Specific formulae for different shifts of A S  

In this section the specific closed formulae of U ( 2 n )  generator matrix elements in a 
spin-orbit basis are derived under the different shifts of A S  = *l, 0. 

3.1. A S = + l  

In this case of [ A ;  A ; ] = [ A , + l  A 2 - l ]  and [AY A ' ; ] = [ A ,  A , - 1 1 ,  the highest-weight 
non-canonical Weyl-basis tableaux are: 

and 

By comparison of primed and unprimed Weyl tableaux, the determination of a, p, k 
and 1 is that 

k = A l + l  / = A 2  CY = t  P =s . .  
The U ( 2 )  coupling coefficient between the highest-weight Weyl tableaux is evaluated 
below by using the formulae in the appendix: 
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A 1 + 1  A I  

L_1 

= 1 x 1  = l .  ( loa )  

For this case the [ Yn+l] of U(n + 1 )  satisfying (8) should be [ A ,  + 1 A2] and the 
positions of the boxes entered by the number n + 1 in the final, intermediate and initial 
Weyl tableaux of U ( n + l )  are shown in figure 1 .  Thus, the matrix element of the 
two-body operator Ekn+lEn+l.l appearing in the denominator in ( s a )  can easily be 
evaluated by virtue of the method presented in [ l ]  as 

1 

A 2 - 1  
n + l  

1 

A 2 - 1  

n + l  

1 

I t  
A 2 - 1  

E A l + l , n + l  E n + l , A 2  A 2  

E A  I + l , n  + 1 

A 1  I n t ,  

1 1 

A 2  n + l  

A 1  

n + l  

1 
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Figure 1. The positions of the number n + l  in the final, intermediate and initial Weyl 
tableaux of U(n + 1)  for the case of AS = 1. 

Finally, the value of AAs=] in ( 5 a )  is determined by 

1 1 

I A 2 - 1  

1 
2 

2A2-2 
2A2-1 
2A2+ 1 

2Al- 1 
2A1+1 

AI 
A l + l  

1 
2 

2A2-2 
2A2-1 

2A2S 1 
2A2 

2A1 - 1 

where we have used the property of the transformation coefficients from the maximal 
non-canonical Weyl tableaux of U ( 2 n )  

to their corresponding canonical Weyl tableaux being value one, and the single index 
7 (7 = 1 , 2 , .  . . , 2 n )  for the U ( 2 n )  generators in the expression of matrix elements 
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between canonical Weyl tableaux. The single index q is associated with the index 
pair (p i )  by 

I 77'21'-1 for p = z  

q =2i  for p = -f. 

From 9(a),  ( loa) ,  ( lob)  and ( ~ O C ) ,  the expression of U(2n) matrix elements in the 
spin-orbit basis for the shift A S  = 1 is obtained as 

It is necessary to mention that, in using (ll),  the calculation of the matrix elements 
of the two-body operator Ei,,+, must be parallel to that of Ek,,+, E,,,,, in (lob). 
In other words, the positions of n + 1 in the final, intermediate and initial Weyl tableaux 
must be identical to those shown in figure 1. 

3.2. AS= -1 

In this case, we have 

[ A i  A:]=[A1-1 A2+1] [A'; A ; ] = [ A , - l  A2]. 

In the same way as above we can take 

k = A 2 + l  l = A l  c Y = J  P = ?  
The [ Y,,,] of U(n + 1) should be [ A ,  A,+ 11 and figure 2 shows the positions of the 
number n + 1 in the final, intermediate and initial Weyl tableaux of U( n + 1). Thus 
the factors in (9a)  can be evaluated as 

Figure 2. The positions of the number n + l  in the final, intermediate and initial Weyl 
tableaux of U(n + 1) for the case of AS = -1. 



[ Y n + ~ l  
[ A i  E k , n + I & + l , ,  

WLn 

3.3. A S = O  

The case is somewhat complicated because two intermediate IR, [ A l - l  A2]  and 
[ A ,  A 2 -  11, are involved. An additional quantum number P is introduced to solve this 
problem. That is, all the intermediate states which appeared in the calculation must 
belong to the indicated IR of U ( 2 )  or U ( n )  for each given P. The detailed derivation 
is as below: 
P =  1. From table 1 we have in this subcase 

[ A :  A : I = [ A i  A 2 1  and [AY A ; ] = [ A l - l  A,]. 

It is natural to take k = A I ,  I = A , ,  a = and /3 = T. The [ Yn+,] of U ( n  + 1 )  is chosen 
as [ A ,  A,]. Figure 3 shows the positions of the number n + 1 in the final, intermediate 
and initial Weyl tableaux of U (  n + 1 ) .  Similarly, we have 

[ A I  A 2 1  (12) 

Figure 3. The positions of the number n + l  in the final, intermediate and initial Weyl 
tableaux of U( n + 1 )  for the case of AS = 0 and P = 1. 
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P = 2 .  In this subcase, [ A ;  A ; ] = [ A ,  A2] and [A: A ; ] = [ A ,  A,-11. It is natural to 
take k = A 2 ,  1 = A 2 ,  a =.1 and p = & .  The [Yn+,] of U ( n + l )  is chosen as [ A ,  A2]. 
Figure 4 shows the positions of the number n + 1 in the final, intermediate and initial 
Weyl tableaux of U (  n + 1) under the above choice. Thus, we have 

Figure 4. The positions of the number n + l  in the final, intermediate and initial Weyl 
tableaux of U(n + 1 )  for the case of AS = 0 and P = 2. 

Substituting (14) and (15) into ( 9 b ) ,  the final expression for AS = O  is obtained as 

Some examples will be given to demonstrate the use of equations (13)  and (16 ) .  
Before doing so, we emphasise again that, in the application of these formulae the 
positions of the number n + 1 in the Weyl tableaux of U ( n  + 1) must be the same as 
those in the corresponding figures 1-4. 
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Example 1.  For n = 8, d = 4, AS = -1 1 

1 2  
2 4  

t t t t i  @ 5 6 
7 7  
8 

E69 

Example 2. For n = 7, d = 3, AS = 0: 

1 2  
2 4  
5 6  
7 7  
8 
9 

EWE93 

1 2  
2 4  

9 

I : ;  

1519 

5 9  
7 
8 

7 
8 



1 1  

xl l ;  

4 
6 

E18 

1 
- 45. 

12 
- -- 

These results are the same as evaluated by using the method of Lev [ 5 ] .  

4. The matrix representation 

In this section we will discuss briefly the matrix representation of the U ( 2 n )  generator. 
It is clear that, for a given AS and P, the U ( 2 )  coupling coefficients are identical for 
all the U ( 2 n )  matrix elements with the same generator a, , , ,  and the same initial Weyl 

tableau I ) . So, the whole column of the U ( 2 n )  generator matrix representation 

may be related to the following formula: 
w2 wn 



x Ei,n+lEn+*,j 
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[ A ,  A 2 1  

d - 2  w; 

w; I 

where the 1 WS), for a given AS, can easily be determined by the generator awi,uj and 
1 W2).  So, the required matrix representation may be produced by removing all the 
boxes entered by n + 1 from those Weyl tableaux obtained by (17) .  

Appendix 

Let us denote by d the axial distance between the last box of each column in canonical 
Weyl basis tableaux spanning the IR [ A ,  A2]  of U(2), i.e. d = A l  - A 2 +  1 .  Let d, and 
d2 be the number of boxes in 1 W2) shown in the following figure: 

dl 

Thus, the expressions of the vector coupling coefficients of U(2) are as follows: 

Al+1 A I  
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A l + l  A I  

A 2  

and the expressions of the contragradient vector coupling coefficients of U(2) are 
given by 

A i - 1  A1 
c Y 7  

(A51 
t. ' .ttt. * .ti. * 9 . 1 . 1  

In the above formulae all the parameters d , ,  d ,  and d refer to the initial Weyl tableaux. 
The coupling coefficients 

can be obtained by the relation: 

where the I R  [ A ;  A i ]  should be determined by the selection rules of table 1 for the 
given AS and P. 
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